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Increased meiotic spindle abnormalities and aneuploidy in oocytes
of women of advanced maternal ages lead to elevated rates of
infertility, miscarriage, and trisomic conceptions. Despite the
significance of the problem, strategies to sustain oocyte quality
with age have remained elusive. Here we report that adult female
mice maintained under 40% caloric restriction (CR) did not exhibit
aging-related increases in oocyte aneuploidy, chromosomal mis-
alignment on the metaphase plate, meiotic spindle abnormalities,
or mitochondrial dysfunction (aggregation, impaired ATP pro-
duction), all of which occurred in oocytes of age-matched ad
libitum-fed controls. The effects of CR on oocyte quality in aging
females were reproduced by deletion of the metabolic regulator,
peroxisome proliferator-activated receptor γ coactivator-1α (PGC-
1α). Thus, CR during adulthood or loss of PGC-1α function main-
tains female germline chromosomal stability and its proper segre-
gation during meiosis, such that ovulated oocytes of aged female
mice previously maintained on CR or lacking PGC-1α are compara-
ble to those of young females during prime reproductive life.
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Chromosomal and spindle abnormalities become much more
prevalent in oocytes with age and are considered the major

factors responsible for the increased incidence of infertility, fetal
loss (miscarriage), and conceptions resulting in birth defects—
most notably trisomy 21 or Down syndrome—in women over 35 y
of age (1–4). This latter problem is compounded by modern fer-
tility trends in that first birth rates for women 35–44 y of age in the
United States have increased by more than eightfold in the past
four decades (5, 6). Although the occurrence and consequences
of aging-related aneuploidy in oocytes of humans and animal
models have been extensively studied (1–4, 7–9), approaches to
maintain fidelity of chromosome segregation during meiotic cell
division with age have remained elusive. Management of fertility
issues associated with advancing maternal age thus remains a
challenge, even with the aid of modern assisted reproductive
technologies (ARTs).
The only strategy identified thus far that can improve oocyte

quality in aging females has been developed using mice as
a model and involves chronic administration of pharmacologic
doses of antioxidants during the juvenile period and throughout
adult reproductive life (10). However, this approach has signifi-
cant long-term negative effects on ovarian and uterine function,
leading to higher fetal death and resorptions and decreased litter
frequency and size in treated animals (11). Whereas clinical
translation of chronic antioxidant therapy for maintaining oocyte
quality is therefore impractical, these studies tie the free radical
theory of aging (12) to reduced oocyte quality in females of
advanced reproductive age (13). In further support of this, in-
duced oxidative stress in isolated mouse oocytes reduces ATP
levels and increases meiotic spindle abnormalities leading to
chromosomal misalignment (14). Additionally, whereas meiotic
maturation of human oocytes can proceed over a range of ATP

levels, oocytes with higher ATP show a greater potential for
successful embryogenesis, implantation, and development (15).
Restricted caloric intake without malnutrition extends lifespan

and attenuates severity of aging-related health complications in
many species (16–18). A common feature of the caloric re-
striction (CR) response appears to be an alteration of metabolic
regulators that affect mitochondrial dynamics and accumulated
oxidative stress in organs with age (19–21). For example, the
growth hormone/insulin/insulin-like growth factor-1 axis, mam-
malian target of rapamycin, AMP-activated protein kinase, and
sirtuins have all been implicated as mediators of CR (18, 22–24).
Several of these pathways reportedly converge on peroxisome
proliferator-activated receptor γ coactivator-1α (PGC-1α), a tran-
scriptional regulator that is highly responsive to nutritional cues.
Among its actions, PGC-1α promotes adaptation to energy de-
ficiency by modulating expression of genes involved in mito-
chondrial respiration (18, 22–26). Surprisingly, deletion of
PGC-1α in mice produces only subtle phenotypes, although
several metabolic abnormalities manifest much more robustly
upon a challenge such as acute fasting (27–29). To our knowl-
edge, however, no studies have tested the functional relationship
between PGC-1α and CR in any tissue with age by subjecting
Pgc-1α–null mice to a reduced calorie diet. Herein we undertook
a 4-y investigation to elucidate whether CR during adulthood
without or with manipulation of PGC-1α influences oocyte
quality in female mice on the verge of reproductive failure due to
advancing maternal age.

Results
We first evaluated yield, maturational status, and postfertiliza-
tion developmental competency of oocytes obtained from 12-
mo-old (aged) female mice returned to an ad libitum (AL) diet
for 1 mo following 7.5 mo of dietary CR (CR–AL fed) initiated
in a stepwise fashion at 3.5 mo of age. This protocol was based
on prior work showing that female mice maintained on CR
during adulthood continue to breed and deliver offspring into
advanced ages after their return to an AL diet (30). In control
females allowed to AL feed during the entire study period, the
total number of oocytes and number of fully mature oocytes
(oocytes that reached meiotic metaphase II, MII) ovulated per
female decreased significantly between 3 and 12 mo of age (Fig.
1A). However, the age-related decline in both total and mature
oocyte yield was abrogated in 12-mo-old female mice maintained
on CR (Fig. 1A). Following analysis of 284 (3-mo-old AL fed), 93
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(12-mo-old AL fed), and 198 (12-mo-old CR–AL fed) oocytes,
no differences were observed with respect to in vitro fertilization
(IVF) or preimplantation embryonic development rates (Fig.
S1). However, because CR improved the yield of MII oocytes per
female after an induced ovulation cycle at 12 mo of age (Fig.
1A), the number of blastocysts obtained following IVF of oocytes
obtained from each aged CR–AL-fed mouse was similar to that
obtained using young mice and significantly higher than that
using aged AL-fed mice (Fig. 1B).
To determine whether the beneficial effect of CR on main-

taining oocyte yield from aging females was related to differ-
ences in body weight, we assessed superovulation rates in young
AL-fed, aged AL-fed, and aged CR–AL-fed females on a mouse-
by-mouse basis. We observed that differences in oocyte yield per
mouse, which were greatest in the aged AL-fed group, were
unrelated to variations in body weight among the three groups of
mice (Fig. S2). Also notable was that the reserve of oocyte-
containing follicles in ovaries of both 12-mo-old AL-fed and CR–

AL-fed females was severely diminished compared with that of
3-mo-old mice (Fig. 1C). Thus, the ability of CR to maintain
a high yield of MII oocytes from aged females does not appear
linked to changes in body weight or maintenance of a follicle
reserve equivalent in size to that of young females.
We next studied the quality of MII oocytes collected from

aged AL-fed and CR–AL-fed females. Fully mature (MII)
oocytes were selected for analysis because aging-related defects
in oocytes are clearly evident at this maturational stage and
because MII oocytes represent the fertilization-competent egg
pool. To this end, we assessed chromosomal dynamics, spindle
integrity, and mitochondrial dynamics, which are the most criti-
cal events involved in ensuring developmental competency of the
egg. In MII oocytes collected from continuously AL-fed females,
the incidence of hyperploidy (>20 chromosomes per cell; Fig.
2A) increased significantly from nondetectable levels at 3 mo of
age to nearly 5% at 12 mo of age. In contrast, no hyperploidy was
detected in MII oocytes from 12-mo-old mice maintained on CR
(Fig. 2B). The incidence of hypoploidy (<20 chromosomes per

cell) was also significantly elevated in MII oocytes from 12-mo-
old versus 3-mo-old AL-fed females, and this was completely
prevented by CR (Fig. 2B). A similar pattern in the incidence of
premature sister chromatid separation (PSCS) was observed in
mature oocytes among the three groups of mice, although these
changes were not statistically significant (Fig. 2B).
Confocal analysis of α-tubulin and DNA distribution revealed

that meiotic spindles in greater than 90% of MII oocytes col-
lected from either 3-mo-old AL-fed or 12-mo-old CR–AL-fed
females were regular in shape and size with distinct microtubule
morphology; however, less than 39% of MII oocytes retrieved
from 12-mo-old AL-fed mice exhibited normal meiotic spindles
(Fig. 3 A and C). Furthermore, whereas 64% of MII oocytes
from 12-mo-old AL-fed mice exhibited incomplete or aberrant
alignment of chromosomes on the metaphase plate, 25% or
fewer of the MII oocytes collected from either 3-mo-old AL-fed
or 12-mo-old CR–AL-fed females exhibited chromosomal mis-
alignment (Fig. 3 B and C).
We then assessed whether mitochondrial aggregation, which

has been linked to the decline in oocyte quality with advancing
age (7), was affected by caloric intake. Confocal microscopic
analyses of MII oocytes stained with MitoTracker revealed that
over 90% of MII oocytes collected from 3-mo-old AL-fed
females exhibited even and diffuse cytoplasmic distribution of
mitochondria (Fig. 4 A and B). By comparison, nearly 50% of
MII oocytes obtained from 12-mo-old AL-fed females exhibited
extensive mitochondrial aggregation. However, more than 90%
of mature oocytes collected from 12-mo-old CR–AL-fed females
exhibited even and diffuse mitochondrial distribution, re-
sembling that observed in MII oocytes retrieved from young
females (Fig. 4 A and B). Paralleling these changes in mito-
chondria, the aging-related decline in ATP content in oocytes of
aged AL-fed females was similarly prevented by adult-onset CR
(Fig. 4C).
Finally, we used gene mutant mice to explore whether deletion

of PGC-1α, which has been linked to the actions of CR in other
cell types (24, 31–33) and is expressed in oocytes (Fig. 5A and
Fig. S3), influences the ability of CR to maintain oocyte quality
with age. Consistent with past studies (27), an absence of PGC-
1α increased mortality in mutant offspring (90 pups of 696 total
generated by breeding heterozygotes were genotyped as knock-
outs at day 21). Assessment of null females that survived to 12
mo (36 of 47 total) showed that PGC-1α deficiency in AL-fed
mice recapitulated the beneficial effects of CR on ovulated oo-
cyte yield (Fig. 5B), meiotic spindle formation (Fig. 5C), chro-
mosomal alignment (Fig. 5D), and mitochondrial distribution
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Fig. 1. CR prevents the aging-related decline in ovulated oocyte numbers.
(A) Yield and morphology of oocytes obtained after induced ovulation of 3-
mo-old (3M) AL-fed (n = 6), 12-mo-old (12M) AL-fed (n = 12), and 12M CR–AL-
fed (n= 6)mice (mean± SEM; *P< 0.05 versus 3MAL-fed females). (B) Number
of in vitro fertilized MII oocytes that developed to blastocysts per induced
ovulation cycle per female (n = 11–16 mice per group; mean ± SEM; *P < 0.05
versus 3M AL-fed females). (C) Number of nonatretic immature follicles per
ovary in 3M AL-fed, 12M AL-fed, and 12M AL–CR-fed mice (mean ± SEM,
n = 9–14 mice per group; *P < 0.05 versus 3M AL-fed females; **P < 0.05).
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Fig. 2. Aging-associated aneuploidy in MII oocytes is prevented by CR. (A)
Example of a typical chromosome spread of an MII oocyte containing 20
chromosomes (DAPI staining of DNA shown in white). (B) Incidence of hy-
perploidy, hypoploidy, and PSCS (and total chromosomal defects from all
three endpoints combined) in MII oocytes of 3M AL-fed, 12M AL-fed, and
12M CR–AL-fed females (mean ± SEM, n = 18–23 mature oocytes analyzed
per group in each experiment replicated four times using a total of 20–34
mice per group; *P < 0.05 versus 3M AL-fed females; nd, none detected).
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within the cytoplasm (Fig. 5E). At 12 mo, AL-fed females lacking
PGC-1α exhibited a slightly larger follicle reserve than their wild-
type counterparts, but follicle numbers remained severely di-
minished compared with young adult animals of either genotype
(Fig. S4). No further changes in oocyte numbers per ovary (Fig.
S4), or in oocyte yield or quality (Fig. 5 B–D), were observed
when mice lacking PGC-1α were subjected to CR.

Discussion
Oocyte donation studies show that aging-related infertility in
women can be effectively overcome through the use of oocytes
from young adult donors (34, 35). Additionally, postmenopausal
women can carry pregnancies to term as surrogates with success
rates equaling those of younger patients undergoing ART with
their own oocytes (36, 37). It is therefore believed that deteri-
oration of egg quality is the single most important factor for de-
termining pregnancy success in women of advanced reproductive
age. Production of a developmentally competent egg requires that
an oocyte successfully completes the reductive cell division pro-
gram of meiosis. A full chromosome complement is then restored
upon fusion of the egg with a haploid sperm at fertilization, ini-
tiating embryogenesis. Unfortunately, the meiotic cell cycle be-
comes highly prone to errors with age, which often results in a
much higher proportion of aneuploid oocytes ovulated by older
women (38, 39). One of the most widely known consequences of
female reproductive aging is a dramatic rise in trisomy 21, which

increases from around 2% of clinical pregnancies in women in
their twenties to 30% or more of clinical pregnancies in women in
their forties (2, 39). Our understanding of this maternal age effect
remains limited; however, analyses of human and mouse oocytes
have shown that aging disrupts the ability of oocytes to assemble
and maintain meiotic spindles, which tightly align homologous
chromosomes for segregation at anaphase. Other than chronic
antioxidant treatment (10), which has significant limitations (11),
efforts to prevent chromosomal or meiotic spindle abnormali-
ties in oocytes of aging females have proven unsuccessful in any
model system.
Here we provide evidence from studies in mice that not just

chromosomal integrity but a spectrum of endpoints that impact on
oocyte quality are all maintained in aged females by CR during
adult life. Further, the following observations indicate that these
endpoints may be intricately linked in the context of under-
standing how aging and CR affect oocytes. First, given the im-
portance of a properly formed spindle to chromosomal alignment
and segregation during meiosis, prevention of aging-related an-
euploidy in oocytes by CR can logically be tied to dramatic im-
provements in meiotic spindle assembly and maintenance. Of all
the endpoints assessed in our study, the increase in incidence of
oocytes exhibiting spindle abnormalities, and consequently chro-
mosomal misalignment, in AL-fed females from less than 10% to
almost 65% between 3 and 12 mo of age offers the most prom-
inent example of the negative influence of maternal aging on egg
quality. Whereas there is some variation in the reported preva-
lence of these abnormalities in the literature, which may be due to
strain- or methodology-related differences, the high rates of
chromosomal and spindle abnormalities observed in our study are
consistent with previous reports in humans and mice at ages close
to the end of their reproductive lifespan (7, 8, 10, 40–43).
We also observed that adult-onset CR inhibited the aging-

associated increase in mitochondrial aggregation in oocytes and
maintained intracellular ATP concentrations at levels compara-
ble to those detected in oocytes of young adult females. On the
basis of prior studies with mouse and human oocytes showing
that impaired mitochondrial function and lower ATP levels are
associated with meiotic spindle abnormalities and failed con-
ception (14, 15), the decrease in ATP availability in oocytes of
aged AL-fed females is consistent with a critical need for ade-
quate energy availability in proper assembly and maintenance of
meiotic spindles.

12M AL

3M AL

12M
CR-AL

PI MergedTubulinC

A B *
Sp

in
dl

e 
ab

no
rm

al
iti

es
 

(p
er

ce
nt

 o
f t

ot
al

 o
oc

yt
es

)

C
hr

om
os

om
al

 m
is

al
ig

nm
en

t 
(p

er
ce

nt
 o

f t
ot

al
 o

oc
yt

es
)

CR-ALAL
3M 12M 12M

CR-ALAL
3M 12M 12M

*

0

15

30

45

60

75

0

15

30

45

60

75

Fig. 3. CR prevents spindle and chromosomal alignment defects in oocytes
of aged females. (A and B) Incidence of spindle abnormalities (A) and chro-
mosomal misalignment on the metaphase plate (B) in MII oocytes of 3M AL-
fed, 12M AL-fed, and 12M CR–AL-fed mice (mean ± SEM, n = 3–20 oocytes
analyzed per group in each experiment replicated four to seven times using
a total of four to eight mice per group; *P < 0.05 versus 3M AL-fed females).
(C) Representative examples of meiotic spindles in MII oocytes from the in-
dicated mice (n = 22–72 oocytes analyzed per group), after labeling with
α-tubulin antibody (green) and counterstaining of DNA with PI (red).
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Interestingly, PGC-1α deficiency in aged AL-fed mice repro-
duced the actions of CR on oocyte quality, and combining the
two approaches (namely, PGC-1α–deficient mice maintained on
CR) produced the same outcomes in oocytes as those obtained
using each approach alone. On the basis of gene expression
analysis, CR has been reported in somatic cells to act, at least in
part, through activation of PGC-1α (24, 31). In addition, PGC-1α
is thought to mediate gluconeogenesis in response to CR, al-
though evidence for this conclusion derives from studies of acute
fasting of animals or overexpression of PGC-1α using adenovi-
ruses (25, 44) and not CR. Our study is unique, as far as we are
aware, in subjecting mice lacking PGC-1α to a reduced calorie
diet as a means to assess the functional role of this nuclear
coactivator in mediating the actions of CR in any tissue with age.
On the basis of correlations drawn from gene expression studies
(24, 45), we initially expected that the effects of CR might be
minimized, rather than reproduced, by PGC-1α deficiency. Al-
though unanticipated, this outcome is similar to the unexpected
increase in gluconeogenic gene expression in the livers of PGC-
1α–deficient animals (27). Mice lacking PGC-1α are also sur-
prisingly lean and do not develop diet-induced obesity or insulin
resistance when maintained on a high-fat diet (25, 27, 29). Thus,
whereas a positive correlation between CR and elevated PGC-1α
expression in various tissues has been reported (45), some of the
beneficial effects of CR in animals may be tied to reduced, rather
than elevated, function of the PGC-1α pathway.
Because levels of PGC-1 protein remained essentially un-

changed in ovaries of AL- or CR–AL-fed mice with age (Fig. S5),
it does not appear that CR directly alters Pgc-1 gene expression
in this organ. However, the finding that CR and PGC-1α in-
dependently produced the same outcomes in ovulated oocytes
suggests that signaling pathways activated in the two models
converge at a common downstream point that is essential to
ensuring egg quality. Although more work will be needed to
definitively establish this, coordination through mitochondria is
a logical possibility for several reasons (46, 47). First, both PGC-
1α deficiency and CR maintained an even and diffuse distribu-

tion of active mitochondria in oocytes of aged female mice,
contrasting starkly with the abnormal aggregation of mitochon-
dria observed in oocytes of AL-fed mice with age. This latter
event was associated with a significant decline in oocyte ATP
content, a threshold level of which is required for assembly and
maintenance of the meiotic spindle (14). Second, both CR and
PGC-1α interact with sirtuins as a means to control adaptive
responses to energy availability (22–25). Recent findings have
shown that multiple sirtuins isoforms are expressed in mouse
eggs, and that loss of mitochondrial-associated sirtuin-3 in
oocytes increases mitochondrial production of reactive oxygen
species leading to impaired preimplantation embryonic de-
velopment (48). Such an outcome is consistent with a primary
role for accumulated oxidative stress as a driving force behind
declining oocyte quality with age and with the known inverse
relationship between CR and aging-associated increases in
mitochondrial oxidant damage in the body (19–21).
In summary, this study has uncovered striking beneficial

effects of adult-onset CR on chromosomal, spindle, and mito-
chondrial dynamics in mature oocytes of female mice at ages
normally associated with poor reproductive parameters. These
outcomes translate into vastly improved fertility in aged animals
on the basis of recent work with mice showing that CR initiated
during adulthood significantly extends reproductive lifespan and
increases survival rate of offspring conceived by aging females
(30). The present study not only establishes that CR sustains
female fertile potential with age through significant improve-
ments in oocyte chromosomal dynamics, but also identifies PGC-
1α as a regulator of oocyte quality. More broadly, this study
reinforces the idea that oocyte aneuploidy and spindle defects
are not inevitable consequences of the aging process, thus
opening prospects to safely circumvent the negative impact of
aging on germline chromosomal segregation during meiosis. And
whereas the effects of CR on ovarian function, oocyte dynamics,
or germline aneuploidy in primates are currently unknown, re-
cent studies have shown that rhesus monkeys maintained on CR
into advanced age exhibit many of the same health benefits as
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those reported in mouse studies (18, 49, 50). Thus, it seems
reasonable to now add prevention of oocyte aneuploidy and
spindle defects, as a means to improve fertility and pregnancy
outcomes in women of advanced reproductive age, to the
growing list of human health endpoints that might one day be-
come manageable through CR mimetics currently in de-
velopment (51–55).

Materials and Methods
Animals. B6D2F1 male mice were obtained from The Jackson Laboratory.
Virgin C57BL/6 female mice were obtained from the National Institute on
Aging or The Jackson Laboratory. Mice with a targeted disruption of the Pgc-
1α gene (27) were obtained as heterozygous breeders from B. M. Spiegel-
man (Harvard Medical School, Boston, MA). All experiments were reviewed
and approved by the institutional animal care and use committee of Mas-
sachusetts General Hospital.

Feeding Regimen.We used an adult-onset 40% CR protocol developed by the
National Institute on Aging (56). Females were housed individually in
pathogen-free facilities and fed once daily with a rationed amount of for-
tified rodent diet (30, 56). The CR protocol was continued from 3.5 until 11
mo of age, at which time CR females were AL fed for 1 mo. Water was
provided AL during the entire study. Effectiveness of the CR protocol was
confirmed by monitoring body weight and estrous cyclicity (Figs. S6 and S7;
SI Materials and Methods for details).

Oocyte Retrieval. Mice were superovulated by injection of pregnant mare
serum gonadotropin (PMSG, 10 IU; Sigma-Aldrich) followed by human cho-
rionic gonadotrophin (hCG) (10 IU; Sigma-Aldrich) 46−48 h later. Oocytes
were collected from oviducts 15−16 h after hCG injection, denuded of cu-
mulus cells using hyaluronidase (Irvine Scientific), washed with human tubal
fluid (HTF) (Irvine Scientific) supplemented with BSA (fraction V, fatty acid-
free; Sigma-Aldrich), and classified as MII (first polar body in perivitelline
space), maturation arrested (germinal vesicle breakdown with no polar body
extrusion, or germinal vesicle intact), or degenerated.

IVF and Embryo Culture. Spermwere collected from the cauda epididymides of
male mice into HTF supplemented with BSA and then capacitated. Denuded
MII oocytes or intact cumulus–oocyte complexes were mixed with 1−2 × 106

sperm/mL in HTF supplemented with BSA for 6−9 h, washed, and transferred
to fresh medium. The number of two-cell embryos was used to measure IVF
success rate, and blastocyst development rates from these embryos were
recorded (57) (SI Materials and Methods for details).

Chromosomal Analysis. A total of 795 mature (MII) oocytes collected from 3-
mo-old AL-fed (n = 20 mice), 12-mo-old AL-fed (n = 34 mice), and 12-mo-old
CR–AL-fed (n = 20 mice) females were fixed individually for chromosomal

analysis using Tarkowski’s method (58, 59). Preparations were stained with
4’,6-diamidino-2-phenylindole dihydrochloride (DAPI; Sigma-Aldrich) and
scored for aneuploidy rates under a fluorescence microscope (SI Materials
and Methods for scoring criteria).

Immunofluorescence. Superovulated oocytes were denuded of cumulus cells,
briefly incubated in acidified tyrode’s solution (Irvine Scientific) to soften the
zona pellucida, and immunostained (SI Materials and Methods for details)
using mouse anti–α-tubulin antibody (Sigma-Aldrich) followed by goat
antimouse IgG conjugated with Alexa Fluor-488 (Life Technologies). Oocytes
were mounted using Vectashield containing propidium iodide (PI; Vector
Laboratories) and analyzed by confocal microscopy.

Mitochondrial Analysis. Oocytes were denuded of cumulus cells, incubated in
MitoTracker Red CMRox (Life Technologies), and processed for microscopic
analysis (SI Materials and Methods for details). Levels of ATP in individual MII
oocytes were determined using a commercially available bioluminescent
assay kit under the manufacturer’s specifications (Sigma-Aldrich).

Gene Expression. Total RNA from five MII oocytes or one ovary was isolated
using the RNeasy Plus Micro kit (Qiagen) or Tri-Reagent (Sigma-Aldrich),
respectively, and reverse transcribed (Superscript II; Life Technologies) with
random primers (Promega). The cDNA was amplified by PCR with gene-
specific primers (Table S1).

Protein Analysis. PGC-1 protein was localized in paraformaldehyde-fixed
paraffin-embedded tissue sections using a rabbit anti–PGC-1 antibody (Cal-
biochem), as described (60). Protein samples (10 μg) were assessed by im-
munoblotting using antibodies against PGC-1 (Calbiochem) and panactin
(Neomarkers) as a loading control (SI Materials and Methods for details).

Data Analysis. All experiments were independently replicated at least three
times. Quantitative data from experimental replicates were combined and
are presented as the mean ± SEM. Statistical comparisons between mean
values were performed using ANOVA and Student’s t test. P values <0.05
were considered significant.
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